12 research outputs found

    Numerical solutions for point masses sliding over analytical surfaces: Part 1

    Get PDF
    In this study, we introduce a system of differential equations describing the motion of a single point mass or of two interacting point masses on a surface, that is solved by a fourth-order explicit Runge\u2013Kutta (RK4) scheme. The forces acting on the masses are gravity, the reaction force of the surface, friction, and, in case of two masses, their mutual interaction force. This latter is introduced by imposing that the geometrical distance between the coupled masses is constant. The solution is computed under the assumption that the point masses strictly slide on the surface, without leaping or rolling. To avoid complications stemming from numerical errors related to real topographies that are only known over discrete grids, we restrict our attention to simulations on analytical continuous surfaces. This study sets the basis for a generalization to more complex systems of masses, such as chains or matrices of blocks that are often used to model complex processes such as landslides and rockfalls. The results shown in this paper provide a background for a companion paper in which the system of equations is generalized, and different geometries are presented

    Numerical solutions for point masses sliding over analytical surfaces: Part 2

    Get PDF
    This paper is the second of two companion papers addressing the dynamics of two coupled masses sliding on analytical surfaces and interacting with one another. The motion occurs under the effect of gravity, the reaction force of the surface and basal friction. The interaction force maintains the masses at a fixed distance and lies on the line connecting them. The equations of motion form a system of ordinary differential equations that are solved through a fourth-order Runge\u2013Kutta numerical scheme. In the first paper we considered an approximate method holding when the line joining the masses is almost tangent to the surface at the instant mass positions. In this second paper we provide a general solution. Firstly, we present special cases in which the system has exact solutions. Second, we consider a series of numerical examples where the interest is focused on the trajectories of the masses and on the intensity and changes of the interaction force

    A new approach for landslide modelling: applications to the 1783 Scilla event and to potential Marsili volcano collapses

    Get PDF
    In this study, we present a new 2D numerical model (UBO-Inter) capable to simulate the motion of a landslide down generic surfaces. The body is represented by N point masses that can be seen as the projection on the sliding surface of the center of mass of the elements the system is discretized into. The masses are strictly adherent to the surface and interact with each other by means of inner forces that involve pairs of point masses. The inner force pattern can be schematized by a mass grid where the grid nodes are the point masses and the pairs of interacting masses are connected through edges. The external forces acting on the point masses are: gravity, which is the driving force, the reaction force of the surface, basal friction and drag exerted by the environmental fluid. We test the UBO-Inter model on the 1783 Scilla tsunamigenic landslide, a historical case that serves as a benchmark due to the abundance of coeval data and recent observations on the onshore detachment niche, run-out distance and offshore deposits. Eventually, we investigate three scenarios of mass movements down the eastern flanks of the Marsili submarine volcano (located in the southern Tyrrhenian Sea). They are relevant because cover a broad range of slide volume, from small to huge, and different types of movements. We outline that this is the first time that slope instabilities of Marsili are given specific attention. Though in this thesis we do not address the tsunami generation and propagation problem, Marsili mass failures have the potential to be tsunamigenic and hence our study may be also seen as a significant contribution to tsunami hazard assessment in a broad area of the Tyrrhenian region

    Nature-based solutions efficiency evaluation against natural hazards: modelling methods, advantages and limitations

    Get PDF
    Nature-based solutions (NBS) for hydro-meteorological risks (HMRs) reduction and management are becoming increasingly popular, but challenges such as the lack of well-recognised standard methodologies to evaluate their performance and upscale their implementation remain. We systematically evaluate the current state-of-the art on the models and tools that are utilised for the optimum allocation, design and efficiency evaluation of NBS for five HMRs (flooding, droughts, heatwaves, landslides, and storm surges and coastal erosion). We found that methods to assess the complex issue of NBS efficiency and cost-benefits analysis are still in the development stage and they have only been implemented through the methodologies developed for other purposes such as fluid dynamics models in micro and catchment scale contexts. Of the reviewed numerical models and tools MIKE-SHE, SWMM (for floods), ParFlow-TREES, ACRU, SIMGRO (for droughts), WRF, ENVI-met (for heatwaves), FUNWAVE-TVD, BROOK90 (for landslides), TELEMAC and ADCIRC (for storm surges) are more flexible to evaluate the performance and effectiveness of specific NBS such as wetlands, ponds, trees, parks, grass, green roof/walls, tree roots, vegetations, coral reefs, mangroves, sea grasses, oyster reefs, sea salt marshes, sandy beaches and dunes. We conclude that the models and tools that are capable of assessing the multiple benefits, particularly the performance and cost-effectiveness of NBS for HMR reduction and management are not readily available. Thus, our synthesis of modelling methods can facilitate their selection that can maximise opportunities and refute the current political hesitation of NBS deployment compared with grey solutions for HMR management but also for the provision of a wide range of social and economic co-benefits. However, there is still a need for bespoke modelling tools that can holistically assess the various components of NBS from an HMR reduction and management perspective. Such tools can facilitate impact assessment modelling under different NBS scenarios to build a solid evidence base for upscaling and replicating the implementation of NBS

    Towards an operationalisation of nature-based solutions for natural hazards

    Get PDF
    Nature-based solutions (NBS) are being promoted as adaptive measures against predicted increasing hydrometeorological hazards (HMHs), such as heatwaves and floods which have already caused significant loss of life and economic damage across the globe. However, the underpinning factors such as policy framework, end-users' interests and participation for NBS design and operationalisation are yet to be established. We discuss the operationalisation and implementation processes of NBS by means of a novel concept of Open-Air Laboratories (OAL) for its wider acceptance. The design and implementation of environmentally, economically, technically and socio-culturally sustainable NBS require inter- and transdisciplinary approaches which could be achieved by fostering co-creation processes by engaging stakeholders across various sectors and levels, inspiring more effective use of skills, diverse knowledge, manpower and resources, and connecting and harmonising the adaptation aims. The OAL serves as a benchmark for NBS upscaling, replication and exploitation in policy-making process through monitoring by field measurement, evaluation by key performance indicators and building solid evidence on their short- and long-term multiple benefits in different climatic, environmental and socio-economic conditions, thereby alleviating the challenges of political resistance, financial barriers and lack of knowledge. We conclude that holistic management of HMHs by effective use of NBS can be achieved with standard compliant data for replicating and monitoring NBS in OALs, knowledge about policy silos and interaction between research communities and end-users. Further research is needed for multi-risk analysis of HMHs and inclusion of NBS into policy frameworks, adaptable at local, regional and national scales leading to modification in the prevalent guidelines related to HMHs. The findings of this work can be used for developing synergies between current policy frameworks, scientific research and practical implementation of NBS in Europe and beyond for its wider acceptance

    Towards operationalisation of nature-based solutions for natural hazards

    Get PDF
    Nature-based solutions (NBS) are being promoted as adaptive measures against predicted increasing hydrometeorological hazards (HMHs), such as heatwaves and floods which have already caused significant loss of life and economic damage across the globe. However, the underpinning factors such as policy framework, end-users' interests and participation for NBS design and operationalisation are yet to be established. We discuss the operationalisation and implementation processes of NBS by means of a novel concept of Open-Air Laboratories (OAL) for its wider acceptance. The design and implementation of environmentally, economically, technically and socio-culturally sustainable NBS require inter- and transdisciplinary approaches which could be achieved by fostering co-creation processes by engaging stakeholders across various sectors and levels, inspiring more effective use of skills, diverse knowledge, manpower and resources, and connecting and harmonising the adaptation aims. The OAL serves as a benchmark for NBS upscaling, replication and exploitation in policy-making process through monitoring by field measurement, evaluation by key performance indicators and building solid evidence on their short- and long-term multiple benefits in different climatic, environmental and socio-economic conditions, thereby alleviating the challenges of political resistance, financial barriers and lack of knowledge. We conclude that holistic management of HMHs by effective use of NBS can be achieved with standard compliant data for replicating and monitoring NBS in OALs, knowledge about policy silos and interaction between research communities and end-users. Further research is needed for multi-risk analysis of HMHs and inclusion of NBS into policy frameworks, adaptable at local, regional and national scales leading to modification in the prevalent guidelines related to HMHs. The findings of this work can be used for developing synergies between current policy frameworks, scientific research and practical implementation of NBS in Europe and beyond for its wider acceptance

    Numerical and semi-analytical models of sliding masses: application to the 1783 Scilla tsunamigenic landslide

    Get PDF
    The Scilla rock avalanche occurred on 6 February 1783 along the coast of the Calabria region (southern Italy), close to the Messina Strait. It was triggered by a mainshock of the Terremoto delle Calabrie seismic sequence, and it induced a tsunami wave responsible for more than 1500 casualties along the neighboring Marina Grande beach. The main goal of this work is the application of semi-analtycal and numerical models to simulate this event. The first one is a MATLAB code expressly created for this work that solves the equations of motion for sliding particles on a two-dimensional surface through a fourth-order Runge-Kutta method. The second one is a code developed by the Tsunami Research Team of the Department of Physics and Astronomy (DIFA) of the Bologna University that describes a slide as a chain of blocks able to interact while sliding down over a slope and adopts a Lagrangian point of view. A wide description of landslide phenomena and in particular of landslides induced by earthquakes and with tsunamigenic potential is proposed in the first part of the work. Subsequently, the physical and mathematical background is presented; in particular, a detailed study on derivatives discratization is provided. Later on, a description of the dynamics of a point-mass sliding on a surface is proposed together with several applications of numerical and analytical models over ideal topographies. In the last part, the dynamics of points sliding on a surface and interacting with each other is proposed. Similarly, different application on an ideal topography are shown. Finally, the applications on the 1783 Scilla event are shown and discussed

    Landslide-tsunamis along the flanks of Mount Epomeo, Ischia: propagation patterns and coastal hazard for the Campania Coasts, Italy

    No full text
    Ischia Island has been repeatedly affected by mass collapses, which are mainly caused by the steepness of the main peak (Mt Epomeo) and by phenomena related to its volcanic activity. The most relevant cases of mass failure studied in the literature and postulated to be tsunamigenic cover a wide spectrum of sizes, from sector collapse to small-volume mass transports. Tsunamis generated by landslides in Ischia may affect the coast of the Campania mainland, including the Gulf of Naples. The focus of this work is an evaluation of the pattern of the maximum tsunami energy. To this purpose, we perform a series of numerical simulations by moving the same landslide source in different hypothetical positions around the island. The landslide dynamics are computed through the code UBO-BLOCK, and the tsunami propagation by employing the code UBO-TSUFD, both developed in-house. The final goal is to characterize the coastal areas of the Campania mainland most exposed to tsunami attack from Ischia sources. It is found that the position of the landslide deeply influences the distribution of the tsunami elevation in the coastal stretch north of the Procida Mt, while, remarkably, it is irrelevant inside the Gulf of Naples where the bathymetric effect prevails

    Assessment of the 1783 Scilla landslide–tsunami's effects on the Calabrian and Sicilian coasts through numerical modeling

    No full text
    The 1783 Scilla landslide–tsunami (Calabria, southern Italy) is a well-studied event that caused more than 1500 fatalities on the beaches close to the town. This paper complements a previous work that was based on numerical simulations and was focused on the very local effects of the tsunami in Scilla. In this study we extend the computational domain to cover a wider portion of western Calabria and northeastern Sicily, including the western side of the Straits of Messina. This investigation focuses on Capo Peloro area (the easternmost cape of Sicily), where the highest tsunami effects outside Scilla were reported. Important tsunami ob- servations, such as the wave height reaching 6m at Torre degli Inglesi and flooding that reached over 600 m inland, have been successfully modeled but only by means of a high- resolution (10 m) topo-bathymetric grid, since coarser grids were inadequate for the purpose. Interestingly, the inunda- tion of the small lake of Pantano Piccolo could not be repro- duced by using today’s coastal morphology, since a coastal dune now acts as a barrier against tsunamis. Historical anal- ysis suggests that this dune was not in place at the time of the tsunami occurred and that a ground depression extending from the lake to the northern coast is a remnant of an ancient channel that was used as a pathway in Roman times. The re- moval of such an obstacle and the remodeling of the coeval morphology allows the simulations to reproduce the tsunami penetration up to the lake, thus supporting the hypothesis that the 1783 tsunami entered the lake following the Roman chan- nel track. A further result of this study is that the computed regional tsunami propagation pattern provides a useful hint for assessing tsunami hazards in the Straits of Messina area, which is one of the most exposed areas to tsunami threats in Italy and in the Mediterranean Sea overall.Published1585–16006T. Studi di pericolosità sismica e da maremotoJCR Journa
    corecore